

QUARTILES
Quartiles are those values which divide the series into four equal parts. There are only three quartiles. We denote them by Q1, Q2, and Q3. Q1 is called the lower quartile, which is the value such that (1/4)th of the total observations fall below it and (3/4)th above it. Q2 is the same as median. Q3 is called the upper quartile, which is the value such that (3/4)th of the total observations fall below it and (1/4)th above it. The method of determining quartiles is same as that of median.
INDIVIDUAL SERIES
- Arrange the data in ascending order
- \( {\mathbf Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) item
- \( {\mathbf Q_1 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) item
Let us arrange the data in ascending order
5, 6, 7, 8, 8, 9, 9, 10, 11, 12, 13, 15, 16, 20, 21
Here N = 15
\( {\mathbf Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {{15} + {1}}{4}}\Biggl]^{th} \) item
= value of the 4th item = 8.
\( {\mathbf Q_2 = \Biggl[\frac {{N} + {1}}{2}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {{15} + {1}}{2}}\Biggl]^{th} \) item
= value of the 8th item = 10.
\( {\mathbf Q_3 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {({15} + {1})}{4}}\Biggl]^{th} \) item
= value of the 12th item = 15.
DATA OF EVEN NUMBERS
Let us arrange the data in ascending order
120, 133, 133, 142, 156, 158, 175, 166, 160, 167, 171, 175, 175
\( {\mathbf Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {{12} + {1}}{4}}\Biggl]^{th} \) item
= value of the 3.25th item
= value of the 3rd item + 0.25 (4th item - 3rd item)
= 133 + 0.25 (142 - 133)
= 133 + 0.25(9)
= 135.25.
\( {\mathbf Q_2 = \Biggl[\frac {{N} + {1}}{2}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {{12} + {1}}{2}}\Biggl]^{th} \) item
= value of the 6.5th item
= value of the 6th item + 0.5 (7th item - 6rd item)
= 158 + 0.5 (166 - 158)
= 158 + 0.5(8)
= 162.
\( {\mathbf Q_3 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) item
\( { = value\, of\, the\, \Biggl[\frac {({12} + {1})}{4}}\Biggl]^{th} \) item
= value of the 9.75th item
= value of the 9th item + 0.75 (10th item - 9th item)
= 167 + 0.75 (171 - 167)
= 167 + 0.75(4)
= 170.
DISCRETE SERIES
STEPS
- Arrange the data in ascending order
- Find the cumulative frequencies
- \( \mathbf {Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) item
- \( \mathbf {Q_3 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) item
Values | Frequencies |
---|---|
5 | 8 |
8 | 13 |
12 | 20 |
15 | 22 |
17 | 11 |
20 | 6 |
Here N = 80,
\( \mathbf {Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) = 20.25
\( \mathbf {Q_2 = \Biggl[\frac {{N} + {1}}{2}}\Biggl]^{th} \) = 40.5
\( \mathbf {Q_3 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) = 60.75
Now we can create a table showing cumulative frequencies
Values | Frequencies | cf |
---|---|---|
5 | 8 | 8 |
8 | 13 | 21 (Q1 lies here) |
12 | 20 | 41 (Q2 lies here) |
15 | 22 | 63 (Q3 lies here) |
17 | 11 | 74 |
20 | 6 | 80 |
N = 80 |
\( \mathbf {Q_1 = \Biggl[\frac {{N} + {1}}{4}}\Biggl]^{th} \) item
= value of the 21st item = 8
\( \mathbf {Q_2 = \Biggl[\frac {{N} + {1}}{2}}\Biggl]^{th} \) item
= value of the 41st item = 12
\( \mathbf {Q_3 = \Biggl[\frac {3({N} + {1})}{4}}\Biggl]^{th} \) item
= value of the 61st item = 15
CONTINUOUS SERIES
STEPS
- Find the cumulative frequency
- Find Q1 and Q3 classes
- \( { \mathbf Q_1 =\, size\, of\,\frac {{N}}{4}}^{th} \) item
- \( { \mathbf Q_3 =\, size\, of\,\frac {3{N}}{4}}^{th} \) item
After locating these classes, the values of Q1 and Q3 can be interpolated.
$$ \mathbf Q_1 \,= \,{ L + \frac{\frac{N}{4} - {cf}}{f} × h} $$
Where,
L = the lower limit of the lower quartile class
f = freqwuency of the lower quartile class
h = magnitude of the lower quartile class
cf = the cumulative frequency of the class preceding the lower quartile class
Where,
L = the lower limit of the upper quartile class
f = freqwuency of the upper quartile class
h = magnitude of the upper quartile class
cf = the cumulative frequency of the class preceding the upper quartile class
Age | Frequencies |
---|---|
0-5 | 2 |
5-10 | 5 |
10-15 | 9 |
15-20 | 13 |
20-25 | 18 |
25-30 | 24 |
30-35 | 19 |
35-40 | 17 |
40-45 | 10 |
45-50 | 3 |
We can create a table with cumulative frequency to find Q1, Q2, and Q3.
Age | Frequencies | cf |
---|---|---|
0-5 | 2 | 2 |
5-10 | 5 | 7 |
10-15 | 9 | 16 |
15-20 | 13 | 29 |
20-25 | 18 | 47 |
25-30 | 24 | 71 |
30-35 | 19 | 90 |
35-40 | 17 | 107 |
40-45 | 10 | 117 |
45-50 | 3 | 120 |
N = 120 |
N = 120, \( { \frac {{N}}{4}} \) = 30
Lower Quartile Class = 20 - 25
L = 20, \( {\frac {{N}}{4}} \) = 30, cf = 29, f = 18, h = 5
\( \mathbf Q_1 \,= \,{ L + \frac{\frac{N}{4} - {cf}}{f} × h} \)
= \( { 20 + \frac{{30} - {29}}{18} × 5} \)
= 20.28
N = 120, \( { \frac {{N}}{2}} \) = 60
Median Class = 25 - 30
L = 25, \( {\frac {{N}}{2}} \) = 60, cf = 47, f = 24, h = 5
\( \mathbf Q_2 \,= \,{ L + \frac{\frac{N}{2} - {cf}}{f} × h} \)
= \( { 25 + \frac{{60} - {47}}{24} × 5} \)
= 27.7
N = 120, \( { \frac {3{N}}{4}} \) = 90
Upper Quartile Class = 30 - 35
L = 30, \( {\frac {3{N}}{4}} \) = 90, cf = 71, f = 19, h = 5
\( \mathbf Q_3 \,= \,{ L + \frac{\frac{3{N}}{4} - {cf}}{f} × h} \)
= \( { 30 + \frac{{90} - {71}}{19} × 5} \)
= 35